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Abstract

This paper presents experimental adaptive identification and control of smart structures using neural networks based on

system classification technique. An inverted L-structure with surface-bonded piezoceramic sensors/actuators is used for

analysis. The state space, as well as matrix fraction description presentation, from control input voltages to output sensor

voltage, is established in multivariable form. It is observed that the computational time required for online parameter

identification and controller design is generally quite high. For the system, whose parameters change abruptly with large

amplitudes, classical adaptive control techniques give poor transient behavior and sometimes instability. Also, for

obtaining the ideal closed-loop performance, linear quadratic regulator cannot be re-designed in real-time for changed

parameters of the smart structures, even if these parameters are identified in real time. Closed-loop identification of system

parameters and control gains using system classification-based neural networks is proposed and implemented.

A preliminary experimental study is also done to see the effectiveness of the proposed technique over classical control

methods.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Identification and control of flexible structures has received considerable attention in literature. Much of the
research is motivated by the space industry, where large, lightly damped, flexible structures characterized by
closely spaced modes and low natural frequencies are common. With the emergence of cheap microprocessors
and smart materials like piezoelectric patches, electro-rheological fluids and magneto-rheological fluids, active
vibration control is being used for automobile industry and manufacturing process vibration attenuation.

Very accurate models are required for active vibration control due to inherent small stability margins
present for the non-collocated sensors and actuators. The un-modeled dynamics, component degradation,
changing configuration and changing payloads can destabilize a fixed gain controller-based on nominal system
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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model. Considering this, Tzes and Yurkovich [1,2] developed a time varying, non-parametric transfer function
estimation scheme for flexible structure identification.

Recently, an intensive effort is being done to implement the adaptive control techniques to active vibration
control of smart structures. In this direction, Zeng et al. [3] applied output feedback variable structure
adaptive control to a flexible spacecraft. By using the neural network-based adaptive control strategy; Youn
et al. [4] controlled the composite beam vibrations subjected to sudden de-lamination. Feedback controllers
are suitable for random disturbances causing free vibrations. Shaw [5] used self-tuning regulators combined
with minimum variance controller to control a spring mass system. Using classical positive position feedback
control strategy, Rew et al. [6] suppressed multimodal vibrations of flexible structures. Model predictive
control is an indispensable control technique in process control. By using the adaptive predictive control
strategy, Bai et al. [7] suppressed rotor vibrations. More recently, Lim et al. [8] used adaptive bang–bang
control for the vibration control of civil structures while seismic vibrations occur. Xiangzhu et al. [9] used
ARMAX-based identification and pole placement-based controller for active vibration control of a smart
beam.

Yang et al. [10] presented a vibration suppression scheme for an axially moving string under a
spatiotemporally varying tension and an unknown boundary disturbance. The axially moving string system
was divided into two spans, i.e. a controlled span and an uncontrolled span by a hydraulic touch roll actuator.
They modeled the system as a hyperbolic partial differential equation describing the dynamics of the moving
string. The actuator dynamics was derived using Hamilton principle. Lyapunov method was employed to
design a robust adaptive boundary control law. Input shaping is an effective feed forward control design
strategy. In this direction, Cutforth et al. [11] used adaptive input shaping control for controlling the
vibrations in flexible structures. They explored the idea of adaptive input shaping which allows a fast input
shaper to be used for providing robustness to parametric uncertainty. The adaptive input shaping method was
capable of adaptation during maneuvers. Shape memory alloys (SMA) are an effective smart material in
which the dimensions of the structure change when these are subjected to a change in temperature. A large
strain rates can be easily attained. If the overall system comes under slow dynamics, these can be used
effectively to control the system. Xu et al. [12] developed a shape memory alloy wall joint which can adaptively
attenuate and control the vibration wave propagation in cylindrical shells. Since the parameters of a SMA
joint can be tuned adaptively, the incident wave with different frequencies can be highly attenuated and
controlled.

Kumar et al. [13] presented experimental adaptive identification and control of a smart structure featuring
piezoceramic-based sensors/actuators. An inverted L-structure with surface-bonded piezoceramic sensors/
actuators was used for analysis which is a partial representative of the radial drilling machine and Selected

Compliance Assembly Robot Arm (SCARA). This structure is also extensively used in flexible spacecrafts.
Multi-input multi-output (MIMO) linear quadratic regulator (LQR) was designed and implemented. It was
assumed that the parameters of the smart structure were changing. Closed-loop (CL), time-domain
identification of system parameters in auto-regressive moving average (ARMA) form, was proposed for the
systems changing at slow rates. A thorough study was done to see the effect of updated system and controller
parameters on system performance using adaptive control strategy.

Lin et al. [14] investigated vibration control of a smart beam using piezoelectric damping–modal actuators/
sensors. Laminated composite beams with integrated sensors and actuators were analyzed. Emphasis in their
study was given to the fiber orientation and effect of actuator location on the control system. An
instantaneous, optimal CL control algorithm was used for the adaptive shape control of the dynamic response
of the integrated laminated structure.

Kumar et al. [15] extended their previous work on inverted L structure. In this work, they observed that, to
maintain stability, different set of feedback control gains should be applied for free and forced vibration
attenuation. For forced vibrations, feedback controllers with certain optimum position of CL poles give
maximum vibration reduction. By combining the feedback and feed forward controller (i.e. by using a hybrid
controller), better transient performance can be obtained in case of forced vibrations. By adapting the
controller (feed forward and feedback) parameters the CL system performance remained excellent for large
variations in system parameters. Further, Kumar et al. [16] presented a comparative study of adaptive
controllers based on minimum variance, pole placement and linear quadratic techniques. It was observed that
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the controllers based on minimum variance are noise sensitive and actuator voltage changes sign after each
sampling interval. Hence, this control strategy gives control signals which are detrimental to the life of
piezoelectric actuators. Adaptive controller based on pole placement technique requires high control
effort and gives poor performance at and near the nominal system. But, it was observed that the linear
quadratic control-based adaptive controllers are noise tolerant and are free from the above-mentioned
limitations.

Cables and strings also form a major component of practical structures and installations. Chen et al. [17]
investigated adaptive vibration control for axially moving strings with a tensioner. The Lyapunov analysis was
employed to design the controller. The proposed controller was capable of estimating the parameters online.
The Lyapunov stability guarantees the convergence of the transverse vibration of the controlled span of the
string as well as the estimation error of the unknown parameters to zero. Maganti et al. [18] presented a simple
adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible
appendages. It was assumed that the system parameters were unknown and the truncated model of the
spacecraft has finite but arbitrary dimensions. For the synthesis of control system, measured output error and
the states of a third-order command generator were used.

Song et al. [19] investigated a nonlinear model-based adaptive suspension control system using Magneto-
theological (MR) dampers. MR dampers have strong nonlinearities which can be modeled as mathematical
functions. So, the model-based adaptive control algorithms become complicated. The objective of their study
was to investigate the effect of MR model simplifications on the adaptive suspension performance. Numerical
simulations were carried out to prove the efficiency of the proposed controller.

Recently, Kumar et al. [20] investigated in detail that the fixed controllers could become even unstable, with
large changes in system parameters. Robust control and adaptive control design techniques were investigated
in this work. Obviously, to obtain robust performance, it is desirable that the CL poles of the perturbed
structure remain at pre-specified locations for a range of system parameters. For this, the controller designed
based on pole placement method is quite useful. In their work, the controllers based on adaptive and robust
pole placement method were implemented on smart structures. It was observed that, adaptive pole placement
controllers were noise tolerant, but required high actuator voltages to maintain stability. However, robust pole
placement controllers require comparatively small amplitude of control voltage to maintain stability, but are
noise sensitive.

Classical adaptive controllers based on adaptive parameters estimation work efficiently if the system

dynamics is slow and the system parameters are changing slowly with time. However, in vibration control, where
system dynamics is quite fast and the parameters can change abruptly, the efficiency of these controllers
degrades. Either the CL performance is poor or the transient response is unacceptable. The system parameters in
the above cases change quickly as relative configuration of various arms changes. System parameters are
also affected as payloads are changed. For these situations, multivariable adaptive controllers using
computationally intensive methods of parameter estimation cannot be implemented with windows-based
operating systems. Fortunately, for these cases, the mode of change of system parameters is known a priori
(i.e. either by change in relative configuration or by change in payload).

System classification technique based on unsupervised and supervised learning is quite suitable for these
situations. Based on the prior knowledge of the mode of change of system, the system parameters, control gains

and observer gains are calculated offline for various possible cases. Using unsupervised learning techniques
the various systems can be classified into discrete number of classes. Using Learning Vector Quantization
(LVQ) neural networks, these systems can be classified into different classes using first few natural frequencies

as separating criteria. In the present study, these systems are classified based on the first two natural
frequencies. These natural frequencies can be found from spectrum analyzer in real time. Based on these
frequencies, the class of the system parameters, control gains and observer gains is found using trained LVQ
neural networks. By applying the system matrices, control gains and observer gains, identified for
that particular class, system performance can be improved drastically as compared to non-adaptive
control as well as classical adaptive control techniques. The experimental results indicate that a better

transition period performance can be obtained with the proposed technique as compared to other adaptive
control methods. As seen in Ref. [16], Linear Quadratic Control strategy gives best results, hence adopted in
the present work.
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2. Mathematical modeling of smart structures

Schematic diagram of the proposed inverted L structure is shown in Fig. 1. The structure is mounted with
two piezoceramics patches bonded on its surface acting as actuators and other two piezoceramic patches
bonded on surface acting as sensors.

2.1. Finite element modeling

Lagrange’s equations of motion for linear systems is

Xn

s¼1

mjs €ysðtÞ þ cjs _ysðtÞ þ kjsysðtÞ
� �

¼ QjðtÞ; j ¼ 1; 2; . . . ; n, (1)

where y(t) is the physical displacement, _yðtÞ is physical velocity and €yðtÞ is the physical acceleration at time
instant ‘t’ for the particular degree of freedom. Also m, c and k are the elements of mass, damping and stiffness
respectively. Relation (1) represents a set of n simultaneous second-order ordinary differential equations
in generalized coordinates. By using this relation, the infinite degree of freedom distributed system is
approximated by an n-degree of freedom system. This relation can be written in matrix form as [21,22]

M€yðtÞ þ C_yðtÞ þ KyðtÞ ¼ QðtÞ, (2)

where M, C and K are the global mass, damping and stiffness matrices, respectively, and Q (t) is the vector of
physical applied forces at various degrees of freedom at time t. The column vector y(t) is the nodal (also called
physical) displacements at time t. The inverted L structure can be assumed to be made by joining two beams

perpendicular to each other. Table 1 and Fig. 1 show the mechanical properties and geometrical parameters of
the structural system. The structure is divided into 12 elements (i.e. two-dimensional beam elements) with 3
degrees-of-freedom at each node. Two of these are the deflections in x and y-direction and the third one is the
rotation about z-direction. One-dimensional beam elements have only 2 degrees of freedom at each node and
hence unsuitable for modeling the L structure. Global mass and stiffness matrices are found by joining the
elemental matrices. The damping ratios are obtained by modal analysis. Using the Matrix Iteration method
[21], the eigenvalue problem can be solved to give the natural frequencies and mode shapes for various tip
loads ranging from 2 to 20 g. Using the coupled control technique [22], the system can be written in state-space
form [23] and is discussed in next subsection.
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Fig. 1. Discretization of inverted L structure.
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Table 1

Geometrical and mechanical properties

Property Material

Steel structure PZT patches

Maximum length of horizontal limb (mm) 100 –

Maximum length of vertical limb (mm) 100 –

Thickness (mm) 1 1

Length of PZT patch (mm) – 20

Width (mm) 10 10

Young’s Modulus (MPa) 210 64

Density (kg/m3) 7800 7650

x1 (mm) 50

x2 (mm) 10

x3 (mm) 20

x4 (mm) 5
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2.2. State-space modeling

For the system having ‘r’ modes, the system dynamics can be written in matrix state space form as given below

_zðtÞ ¼ azðtÞ þ buðtÞ,

kðtÞ ¼ czðtÞ, ð3Þ

where the modal state vector _zðtÞ by

zðtÞ ¼ z1ðtÞ z2ðtÞ z3ðtÞ z4ðtÞ z2r�1ðtÞ z2rðtÞ½ �
T

and a, b and c are called system matrices and can be obtained in the modal domain as described by
Meirovitch [22].

State coupling matrix

a ¼

0 1 0 0 . . . . . . 0 0

�o2
1 �2B1o1 0 0 . . . . . . 0 0

0 0 0 1 . . . . . . 0 0

0 0 �o2
2 �2B2o2 . . . . . . 0 0

..

. ..
. ..

. ..
. . .

. . .
. ..

. ..
.

..

. ..
. ..

. ..
. . .

. . .
. ..

. ..
.

0 0 0 0 . . . . . . 0 1

0 0 0 0 . . . . . . �o2
r �2Bror

2
66666666666666664

3
77777777777777775

, (4a)

Input coupling matrix

b ¼

0 0 0 0 . . . 0
ð1ÞF1

ð1ÞF2
ð1ÞF3

ð1ÞF4 . . . ð1ÞFa

0 0 0 0 . . . 0
ð2ÞF1

ð2ÞF2
ð2ÞF3

ð2ÞF4 . . . ð2ÞFa

..

. ..
. ..

. ..
. . .

. ..
.

0 0 0 0 . . . 0
ðrÞF1

ðrÞF2
ðrÞF3

ðrÞF4 . . . ðrÞFa

2
6666666666664

3
7777777777775
, (4b)
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Output coupling matrix

c ¼

ð1ÞF1 0 ð2ÞF1 0 . . . ðrÞF1 0
ð1ÞF2 0 ð2ÞF2 0 . . . ðrÞF2 0
ð1ÞF3 0 ð2ÞF3 0 . . . ðrÞF3 0
ð1ÞF4 0 ð2ÞF4 0 . . . ðrÞF4 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

..

. ..
. ..

. ..
. . .

. ..
. ..

.

ð1ÞFs 0 ð2ÞFs 0 . . . ðrÞFs 0

2
66666666666664

3
77777777777775
, (4c)

where or is the natural frequency and Br is the damping ratio at the rth mode, ðrÞFa is the mode shape difference
at the two ends of the piezoelectric patch at actuator ‘a’ and ðrÞFs is the mode shape difference at the two ends
of the piezoelectric patch at sensor ‘s’. This continuous time system is converted into discrete time system using
bilinear transformations at a desired sampling time and we then get the following form [23]:

x k þ 1ð Þ ¼FxðkÞ þ GuðkÞ,

wðkÞ ¼HxðkÞ. ð5Þ
2.3. Piezoelectric sensing and actuation

When a piezoelectric patch, attached to the distributed structure, is subjected to a change in slope at its two
edges, electric charge is developed inside the system. This charge developed in the PZT patch mounted on steel
structure is given by Buttler and Rao [24]

dðtÞ ¼
1

2
ðts þ tpÞðd31 þ upd32Þ

Ep

1� u2p
bðy2ðtÞ � y1ðtÞÞ, (6)

where y2(t) and y1(t) are, respectively, the slopes of end 1 and end 2 of the PZT patch at the instant of time ‘t’.
The thickness of steel and PZT patch are denoted by ts and tp, respectively. The dielectric constants of the PZT
material are denoted by d31 and d32. The breadth of the steel beam and piezoelectric patch is denoted by b. The
value of Young’s modulus of elasticity and Poisson’s ratio for the PZT material are denoted by Ep and up,
respectively. Similarly the value of Young’s modulus of elasticity and Poison’s ratio for the steel beam are
denoted by Es and us, respectively. The values of these parameters are given in Tables 1 and 2. The voltage
developed due to this charge is given by Buttler and Rao [24]

V ðtÞ ¼
dðtÞtp

�pAp

, (7)

where Ap is the area of PZT patch and ep is the permittivity of the PZT material. Since all values except y1(t)
and y2(t) are constant in Eqs. (6) and (7), Eq. (7) may be written as V ðtÞ ¼ Gðy2ðtÞ � y1ðtÞÞ. G is the conversion
coefficient.

When a voltage ‘V’ volt is applied across the piezoelectric patch, the bending moment ‘Mf’ of opposite sense
is produced at both the edges. Value of this bending moment is given by Baz and Poh [25] as

Mf ¼
d31bEp Estpts þ Est

2
b

� �
2 Eptp þ Ests

� �
" #

V . (8)

Since all the parameters except V are constant in Eq. (8), the subsequent relation may be written as Mf

(Nm) ¼ CV (V). C is the conversion coefficient.
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Table 2

Electrical properties of PZT

Property Symbol Value

Piezoelectric charge constant (mV�1) d31 171� 10�12

Piezoelectric charge constant (mV�1) d32 171� 10�12

Poisson’s ratio up 0.28

Permittivity (Fm�1) e 106� 10�12
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2.4. Difference equation (DE) and matrix fraction description (MFD) modeling

State-space form of system parameters is quite suitable for controller design purposes. But, it is difficult to
identify the system parameters in this form. Unfortunately, the adaptive controller cannot be designed easily
for this form. However, using difference equation form, identification task becomes quite easy. Hence, some
transformations are needed to convert the system from state-space form to difference equation form and vice
versa in a unique way. In case, the finite element techniques are not to be used, system identification techniques
can also be applied for mathematical modeling. For that, these transformations are quite helpful.

Defining the transformation matrix T by Guidorzi [26,27]

TT ¼ H1 FTH1 H2 FTH2

� �
. (9)

Using the transformation matrix T, we obtain the new state vector

c ¼Tx. (10)

Eq. (5) is transformed to unique canonical form, using transformation matrix T, by the following relation:

Txðk þ 1Þ ¼TFT�1TxðkÞ þTGuðkÞ and yðkÞ ¼HT�1TxðkÞ (11)

Substituting

Txðk þ 1Þ ¼ cðk þ 1Þ; TFT�1 ¼A; TG ¼ B and HT�1 ¼ C (12)

The following relations are obtained:

c k þ 1ð Þ ¼AcðkÞ þBuðkÞ

yðkÞ ¼ CcðkÞ ð13Þ

The system as described in the above Eq. (13) is unique. It can be now transformed into difference equation
form in a unique fashion. As discussed earlier that for system identification, Auto Regressive Moving Average
(ARMA) difference equations are more useful. The above state-space form can be converted into the
difference equations form, given below, using the technique discussed in Appendix and in Refs. [26,27]:

P0yðtÞ þ P1yðt� 1Þ þ P2yðt� 2Þ þ � � � þ Pryðt� rÞ ¼ Q1uðt� 1Þ þQ2uðt� 2Þ þ � � � þQruðt� rÞ, (14)

where P’s and Q’s are coefficient matrices of the difference equation. This is a rth-order (by considering first
r-modes), l-input, m-output, multivariable system, represented by input–output difference equation model
with u(t) ¼ [u1 (t) u2(t) y ul(t)]

T and y(t) ¼ [y1(t) y2(t) y ym(t)]
T. This difference equation represents the same

dynamics as Eq. (13). The system can then be written in MFD form as [26,27]

W ¼ A�1B, (15)

where A and B are polynomial matrices. For a 2-input, 2-output, second-order system, used in the present
work, results in Appendix can be used.

3. Linear quadratic gaussian (LQG) controller

LQG controller, which is a combination of LQR and Kalman Filter, has been implemented for each state of
the system. The important features of the controller are discussed in the following sections.
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3.1. Modeling the noise characteristics

To estimate the states of the system accurately, noise characteristics must be known. Two types of noises are
considered viz. measurement noise and process noise [23]. The measurement and process errors have been
considered with zero mean. The noise-free part of the signal is obtained by repeating the experiment several
times for an input sequence and taking the average of that output sequence. In the present case, N ¼ 1024
points are taken to construct one full waveform. The measurement noise vector v(k) is estimated by
subtracting the system output from the average output for a particular input sequence. Similarly for process
noise vector w(k) is generated.

3.2. State feedback LQG controller

LQR with Kalman filter has proved to be an excellent robust control system design methodology. Relation
(5) represents the system to be controlled in state space form. Due to the presence of ‘Measurement Noise’ and
‘Process Noise’ the system state and output equations of the stochastic system have the following form [23]:

c k þ 1ð Þ ¼AcðkÞ þBuðkÞ þ wðkÞ

yðkÞ ¼ CcðkÞ þ vðkÞ ð16Þ

where v(k) is the measurement noise vector and w(k) is the process noise vector. The corresponding difference
equation model is written as follows:

P0yðtÞ þ P1yðt� 1Þ þ P2yðt� 2Þ þ � � � þ Pryðt� rÞ þ S0yðtÞ þ S1yðt� 1Þ þ S2yðt� 2Þ þ . . .þ Ss

yðt� sÞ ¼ Q1uðt� 1Þ þQ2uðt� 2Þ þ � � � þQruðt� rÞ, ð17Þ

where S’s are the coefficient matrices. These matrices correspond to a noise model of order s. Eq. (17) can be
converted to equivalent MFD form represented by following relation:

W ¼ A�1Bþ A�1C, (18)

where C represents a polynomial matrix in MFD form constructed from noise covariances using Appendix or
Refs. [26,27].

In state space form, to calculate the control signal, states of the system are needed. Using the inputs uðkÞ
and outputs yðkÞ the future state vector w(k+1) can be estimated accurately by using Kalman Filter.

Using the gain matrix K, control inputs are calculated by the following equation:

uðkÞ ¼ �KwðkÞ. (19)

The system matrices A and B and the weighing matrix R and Q are used to calculate the gain matrix K. The
relative amplitude of the elements of these matrices determines the amplitude of the control signal vector uðkÞ.

3.3. Output feedback LQG controller

Polynomial-based controller design techniques are best suitable for adaptive control. In this approach,
spectral factorization algorithms are often used [28]. To implement the LQG controller two different strategies
are implemented, implicit and explicit. In implicit form, the controller parameters are directly adapted using
input–output data. In explicit form, first of all system parameters are adapted and after that controller
parameters are identified or updated. The detailed method to implement this controller is explained in
Ref. [29]. Explicit LQG adaptive controllers are easy to implement as compared to implicit LQG controller.
However, the computational burden of the former is slightly more than the later.

The algorithm to implement this controller is discussed below:
(1)
 Chose the cost function weighing polynomial matrices u1 and u2.. Here u1 is the output (error) weighing
matrix; u2 is the control weighing matrix appropriate for matrix transfer function.
(2)
 Estimate the coefficients P0, P1, y, Pr, S0, S1, y, Ss and Q1, Q2, y, Qr of difference equation in matrix
form using least-squares method along with covariances c1 and c2.
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(3)
 Find A, B and C in MFD form using Appendix and Refs. [26,27]

(4)
 Calculate the stable spectral factor D using

C̄u1Cþ Āu2A ¼ DD; (20)

where scalar C̄ ¼ 1þ C1z
1 þ C2z

2 þ � � �, if scalar C ¼ 1þ C1z�1 þ C2z
�2 þ � � �.

Similarly scalar Ā ¼ 1þ A1z
1 þ A2z2 þ � � �, if scalar A ¼ 1þ A1z

�1 þ A2z�2 þ � � �.

(5)
 Calculate the stable spectral D1 using

B̄w1Bþ Āw2A ¼ D̄1D1; (21)

where scalar B̄ ¼ 1þ B1z
1 þ B2z

2 þ � � �, if scalar B ¼ 1þ B1z�1 þ B2z�2 þ � � �.
Similarly scalar Ā ¼ 1þ A1z

1 þ A2z2 þ � � �, if scalar A ¼ 1þ A1z
�1 þ A2z�2 þ � � �.
(6)
 Calculate

D1D. (22)
(7)
 Calculate the controller G0/H0 in MFD form using the equation

AH0 þ BG0 ¼ D1D. (23)
(8)
 Convert the controller in polynomial difference equation form using Appendix and Refs. [26,27]
4. Adaptive control using neural networks

4.1. System classification using unsupervised learning

The system matrix ðA;B;CÞ depends upon system’s natural frequencies and mode shapes. As the payload
changes from zero to a maximum specified value considered for the system, the system’s natural frequencies
are changed. So there is direct relationship between tip payload and system matrices. For each payload the
system has distinct natural frequencies. Also with the change in relative configuration of the respective arms of
the inverted L structure, system’s natural frequencies are changed. The first three natural frequencies of the
flexible structure, for various combination of vertical limb length, horizontal limb length and tip load are
calculated. In the present study, length of the vertical limb is varied from 74 to 100mm with 74, 85, 95 and 100
as intermediate steps. Length of horizontal limb varies from 84 to 100mm with 84, 90, 95 and 100 as
intermediate steps. The tip load varies from 2 to 20 g with step of 2 g. Total of 160 combinations are formed
(4� 4� 10). The frequencies and mode shapes are calculated using FEM techniques for all the 160 systems. It
has been observed that for all the possible combinations of vertical limb length, horizontal limb length and
payload, first three natural frequencies are never equal. At the most two frequencies match. The third natural
frequency varies considerably. Table 3 shows important sets with certain combinations of relative lengths and
payloads, which have matching frequencies. To check the efficiency of the finite element model the natural
frequencies of the structure with various combinations of length and payload are measured experimentally
(Table 4). This data shows the good match between theoretical and experimental results. Observing precisely,
it is noted that there is a unique combination of three frequencies for a particular class. Not all the three
frequencies are equal simultaneously. At the most two frequencies can be similar, but the third frequency
differs. So, all the systems can be classified distinctly based on these first three natural frequencies but it is not
desirable due to following reasons:
(1)
 A large number of classes are generated, which is not desirable from the point of view of system
classification.
(2)
 According to sampling theorem, to distinguish the various frequencies, the sampling frequency of the
system should be at least twice the highest frequency content. So, the high value sampling frequency is
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Table 3

First three natural frequencies at different configurations and tip loads

Length of horizontal limb (cm) Length of horizontal limb (cm) Payload (g) Natural frequency (Hz) Case number

I II III

100 100 2 29.14 74.24 362.04 1

95 95 2 29.11 74.91 354.11 52

74 95 4 28.28 79.78 329.62 75

100 90 2 28.77 75.30 369.04 82

95 90 2 30.42 78.51 383.60 92

74 90 4 29.90 82.31 363.41 115

95 84 2 29.51 76.39 395.90 133

74 84 6 28.29 79.02 399.64 157

Table 4

Table showing experimentally determined first three natural frequencies at different configurations and tip loads

Tip load (g) Natural frequency (Hz)

First Second Third

Theoretical Experimental Theoretical Experimental Theoretical Experimental

2 29.14 29 74.24 71 362.04 356

10 16.70 18 47.61 47 266.85 261

R. Kumar et al. / Journal of Sound and Vibration 307 (2007) 639–661648
required. This means more control calculations have to be performed in a small period of time (i.e. in a
sampling period). This needs computational machinery of very high power.
(3)
 Practically, only the first two modes are primarily excited in the present case of inverted L structure.
So, the next simplification is to neglect the third natural frequency. With this approach, all the 160 systems
with different tip loads and relative configurations can be classified into a small number of classes (Fig. 2).
Taking the certain length of the ‘on-line’ data in time domain and using the spectral analysis techniques, the
first two natural frequencies can easily be estimated. The system parameters are directly related with the
natural frequencies, mode shapes and damping ratios (Eq. (4)).The first two frequencies are sufficient for the
classification of different systems. This is due to the fact that the mode shapes and the damping ratios are not
changed much for a particular geometry of structure. Fig. 3 shows the modal parameters as a function of
payload or tip load. Frequencies are changing with a much higher order as compared to mode shape change at
actuator as well as sensor position. Now, according to relation (4), the system matrices are much more
dependent on system’s frequencies. Flowchart as shown in Fig. 4 is used to classify the different systems into a
small number of classes. First of all, the total number of systems is divided into a certain number of classes N.
The weighing matrices Q andR are given a certain initial value. The neural networks working on unsupervised
learning theory are used to classify the total data into N number of classes [31]. Then a competitive neural
network is created. The optimum values of the frequencies corresponding to each class are calculated in such a
manner that the sum of the squares of the difference between the frequencies corresponding to each element of
that class and the optimum frequency values is minimum. Now these optimum frequencies are used to
construct the system matrices A, B and C (by using relation (4)). Afterwards, a LQR is designed by solving
the Ricatti equation resulting in a gain matrix K. Then, the CL stability of all the systems lying in a particular
class is ensured by connecting the gain matrix K in feedback loop. This procedure is used for all the number of
classes N. If the CL stability is not assured for even a single element of each class, the iteration loop is started
by increasing the total number of classes from N to N+1. This loop continues till the CL stability of each
system is assured. Total numbers of 32 classes (Fig. 5) are obtained at the end, covering all the 160 systems.
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The next step is to design the LQRs for each class, so that a uniform CL performance is maintained. This
can be done by forcing the poles of the CL system in a specified region. For each class, the gain matrix K is
calculated repeatedly by increasing the value of the weighing matrix R until all the CL poles lie in a certain
specified stable region for all the N classes. Similar to the controller gain matrix, Kalman filter gain matrix is
calculated offline for each class. These parameters are tabulated against the system’s natural frequencies.

4.2. System classification based on supervised learning

By identifying system parameters offline for all possible configurations and using vector Quantization
techniques, it is possible to categorize the system matrices based on natural frequencies. This gives accurate
identification of system parameters. As LVQ networks are trained offline, computational burden is reduced.
Hence this technique is suitable for online implementation. LVQ neural networks can easily classify the system
parameters based on natural frequencies. The neural networks are trained for all the different set of classes
based on first two natural frequencies. Only, offline computations are required for training of the neural
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networks. These trained weights can now be used online to identify a particular class of the system with certain
system matrices, controller gains and observer gains. One thing worth mentioning is that an excitation signal
of small amplitude and containing frequencies from 0 to 200Hz is continuously applied to the structure during
the identification phase for proper excitation of first two modes. Using the MATLAB toolbox [32], neural
network is trained and the weights of the LVQ Neural Networks are saved for online use during actual
experiment.
5. Experimental setup and procedure

The experimental apparatus for vibration control of smart structures is presented in Fig. 6. The signals from
the PZT patches are fed to the data acquition card. The Analog-to-Digital (A/D) conversion and Digital-to-
Analog (D/A) conversion one done through the data acquition card PXI-6062E of National Instruments,
having 12 bit resolution for the A/D and D/A conversions. The applied control voltage varies from �220 to
+220V. High voltage amplifier was used to step up the voltage in this range, from �10 to+10V supplied by
the computer. A low pass filter is applied in the sensing process to avoid interference of higher modes. The
Graphical Programming software Lab View is used for experimental implementation [33]. Real Time engine
PXI-8187RT using Lab View RT is used to bear the computational burden of adaptive linear quadratic
Gaussian control discussed in Section 3.3. An excitation signal with lower amplitudes, i.e. from �20 to +20V,
is applied during the identification phase to excite all the modes for accurate CL identification.
5.1. Design of excitation signal

For an accurate identification, any arbitrary signal may not be suitable. The input data supplied to the
system for system identification should be informative [34]. Both for open loop (OL) and CL operations,
‘informative’ means that the input should be persistently exciting of a certain order, i.e. that it contains
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sufficiently many distinct frequencies. For the identification of linear systems, there are three basic
requirements that govern the choices:
(a)
 The asymptotic properties of the estimate (bias and variance) depend only on the input spectrum and not
the actual waveform of the input.
(b)
 The input must have limited amplitude.

(c)
 Periodic inputs may have certain advantages.
Based on several factors, the classification of the input signal can be done into various categories, viz.
Filtered Gaussian White Noise, Random Binary Signal, Pseudo-Random Binary Signal, MultiSines and Chirp
Signals or Swept Sinusoids. In the present case, to excite the system in CL, the multisine wave with minimum
crest factor [34] and magnitude of the excitation signal near 20V was used.

5.2. Combined identification and control algorithm

In this section the system parameters are estimated based on the newly available data. Then the system
matrices and controller are selected and are used for the control of new system to obtain the better
performance of the control system. Fig. 7 shows the algorithm for online identification and adaptive vibration
control. In the present case, to check the validity of the proposed technique, first two natural frequencies were
used to classify the system corresponding to tip loads 2–20 g, for vertical and horizontal limb length of
100mm. By using trained LVQ neural network whose weights are saved in a file, any of the 32 classes
can be identified and are used for experimental validation of this technique. The power spectral density of the
data from either sensor 1 or sensor 2 are calculated. The natural frequencies of the system are then obtained.
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These natural frequencies are fed as input to the Learning Vector Quantization Neural Networks (LVQNN).
A LVQ neural network has a first competitive layer and a second linear layer. First two natural frequencies are
the inputs to the network. The competitive layer contains 32 neurons (equal to the number of classes in which
data are to be clustered). The output of the LVQNN will be the identified class number. As already mentioned,
Matlab toolbox is used to create, train and simulate the network (with ‘newlvq’, ‘trainlvq’ and ‘sim’ functions,
respectively). A sufficiently large number of iterations (i.e. 50,000) at a small learning rate were required to
train the neural network. According to this identified class number, the system matricesA;B;C; the controller
gain matrix K and Kalman filter gain matrix L are recalled from the memory, which are stored a priori. The
controller again works for R number of points without any identification/classification involved. When the
iteration counter exceeds R, identification/classification takes place once again. In this way the adaptive
controller continues to work until shutdown is requested.

6. Results and discussion

6.1. Neural Networks-based approach

Table 5 gives the CL response of the system obtained experimentally for the adaptive, as well as non-
adaptive, controllers. According to the length R of the data points used for updating the system parameters,
different results were observed. These are discussed in detail as below.

6.1.1. Data length is 512 points

For the purpose of brevity all the figures showing the results, corresponding to different tip loads and
different length of data series are not presented. However, Table 5, gives the required data. In this case R is
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Table 5

Table showing the comparison of various performance parameters for Neural Networks-based adaptive control and without control

Tip load

(g)

Open loop settling

time (s)

Non-adaptive control Adaptive control

Settling time

(s)

Modal amplitude (dB) Length of data

(L)

Settling time

(s)

Modal amplitude (dB)

Sensor 1 Sensor 2 Sensor 1 Sensor 2

Mode

1

Mode

2

Mode

1

Mode

2

Mode

1

Mode

2

Mode

1

Mode

2

10 4.3 2.43 220 58 2000 0.0 512 1.45 57 8 460 0

256 2.10 115.0 14.0 995.0 0.0

20 5.7 5.10 120 3.0 905 0.0 512 3.13 45 0 225 0

256 3.20 102 7.0 610 0
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taken as 512. The payload changes from 2 to 10 g. Fig. 8 shows the time domain response of the structure with
10 g tip load using the controller and observer designed for 2 g. In this figure, the response of the system to
both the adaptive control (AC) and non-adaptive control (NAC) strategies is presented. By default the
program’s controller is set for 2 g tip load. As the system is excited, the controller designed for 2 g tip load is
applied to the system. Since the data length for identification is of 512 point, which pertains to a time period of
2.56 s corresponding to a sampling rate of 200Hz. With the NAC, a settling time of 2.43 s is obtained at point
B. The OL settling time is 4.3 s. The controller starts at point O. At point C, at nearly 2.56 s, the controller
stops and updates itself. Now the updated controller is pertaining to 10 g based on the frequencies obtained
from stored data. At the point D the system is again excited from its equilibrium position. Since system has
been updated, a settling time of 1.45 s is now obtained. With non-adaptive controller, modal amplitudes
reduces to 220 and 58 dB at sensor 1 for the first and second mode, respectively. The modal amplitude for the
first mode at sensor 2 by NAC is 2000 dB. Using AC modal amplitudes at sensor 1 reduce to 57 and 8 dB at
first and second mode, respectively. Similarly, using AC, the first modal amplitude at sensor 2 reduces to
460 dB.

With NAC maximum amplitude of control voltages was 24 and 60V at actuators 1 and 2, respectively,
Fig. 9. Using AC this amplitude raises to 34 and 70V at actuators 1 and 2, respectively. Due to this higher
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magnitude and proper phase of control voltage, CL settling time decreases. However, very high voltages can
cause electrical breakdown of the piezoelectric materials. The breakdown occurs in the range 1800–2000V
[35]. Working at lower voltages results in increased life of the PZT actuators. In the present work much less
voltages are applied.

Similarly, the controller is tested for a tip load from 2 to 20 g. NAC settling time was 5.1 s. The OL settling
time is 5.3 s. Using AC, this settling time reduces to 3.13 s. Similarly, with NAC, maximum amplitudes of
control voltages were 30 and 50V at actuators 1 and 2, respectively. Using AC these amplitudes rise to 35 and
68V at actuators 1 and 2, respectively.

6.1.2. Data length is 256 points

In this case, it was observed experimentally that the data length of 256 points is sufficient to find accurately
the first few natural frequencies to the required accuracy. This means that controller updating will now take
place after (256/200 ¼ 1.28 s). In this case, the payload was changed from 2 to 20 g. The response time history
is shown in Fig. 10. At point O, the controller starts. At point A, system is excited. From point A to point B
the NAC pertaining to 2 g tip load is in action. At point B, controller updating takes place and the system is
updated on the basis of natural frequencies calculated. At point B the non-updated controller (corresponding
to 2 g tip load) stops for few milliseconds and controller updating takes place. At this point the control action

pauses for a while, and the structure tends to vibrate freely, causing a sudden shoot up of sensor voltage at point B.

The modal amplitude for the first mode at sensor 1 reduces to 102 dB instead of 45 dB with 512 data points
discussed in Section 6.1 (Table 5). Also the modal amplitude for the first mode at sensor 2 reduces to 610 dB
instead of 225 dB with 512 data points in the previous section (Table 5). The reason for this discrepancy is the
addition of the affect of first 256 point starting from point A. During this period the NAC was in action, which
contributes to some degradation of control properties. Still data length of 256 points is beneficial because, one
need not wait for 512 points of poor performance, and then improves the system for better performance. The
controller starts from a peak voltage of 12V at actuator no. 1 and 50V at actuator no. 2 for the first 256
points. Then controller updates and the control peak voltages shifts to 28V at actuator no. 1 and to 50V at
actuator no. 2 (Fig. 11).

It is clear from the data presented above that by decreasing the length of data series used for identification,
control performance decreases, but at the same time it has certain advantages also, i.e. very less time is wasted
in non-adaptive time intervals. System performance improves rapidly. This may be attributed to the fact that,
at lower value of data length, identification frequency increases. At more number of time instants,
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identification takes place. During identification part, controller stops. When the controller stops, vibration
amplitude suddenly increases. Hence the settling time as well as modal amplitudes remains at higher values.

6.2. Classical adaptive linear quadratic gaussian control approach

Afterward, adaptive linear quadratic gaussian (ALQG) control was tested. In this controller, system as well
as controller parameters are updated keeping output and control weighing matrices fixed. As discussed in
Section 3.3, multivariable ALQG control is computational intensive, and hence requires devices running on real

time operating systems. Lab VIEW-based real time engine is used to implement ALQG control. Also, the
stability problem associated with these adaptive control strategies is severe. In noise-dominated zones (i.e. at
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low amplitudes where signal-to-noise ration is less), updating of system parameters is stopped [30]. To cope up
the unmodeled disturbances (random vibrations) and the improper noise model, adaptation of system
parameters is regulated. This regulation is done using the following criterion (to be used in Section 3.3):

lt ¼
0 if o2

tpd2;

1 otherwise:

(
(24)

The scheduling variable ot can be calculated by using Ref. [30]. Fig. 12 shows the scheduling parameter ot

as a function of amplitude. In the case of this dead zone-based approach, the system parameters modification
stops in the dead zone because o2

t pd2. The upper bond of the dead zone, d is assumed to be known, which not
a very hard assumption in case of random disturbances. Table 6 shows the performance parameters for a case
when the ALQG controller was designed using the system parameters corresponding to 10 and 20 g loads. The
output and control weighing matrices were kept fixed. The CL settling times were 2.20 and 3.50 s for tip loads
10 and 20 g, respectively. For tip load of 10 g, at sensor no. 1, the first and second mode amplitudes were 138
and 24 dB respectively. For tip load 20 g, corresponding amplitudes were 140 and 6 dB, respectively. Similar
response was observed for sensor no. 2. So, to obtain better performance, the relative weight age of output and
control weighing matrices must be changed. In classical ALQR design, there is no such provision for online
change in relative weight age of control and output weighing matrices. So, even if modification of system or
controller parameters is taking place online, desired performance cannot be obtained. However, from practical
experience, this problem can be solved up to certain extent. But, using neural network-based technology; all
these modifications are done offline. Hence CL system performs better than Adaptive LQR.

For the specific case in hand, by changing the relative weight age of output and control weighing matrices,
better CL performance can be achieved. As the elements of control weighing matrix are increased in values,
the performance is improved at sensor no. 1 and actuator no. 2 as shown in Fig. 13. Although, the CL settling

time is better for different tip loads at sensor no. 1, the transient response is quite poor.

7. Conclusion

Smart robotic manipulators and machine structures with multimodal participation and multiple systems of
actuators and sensors are considered for adaptive control in this work. An inverted L structure, which is a partial
representative of these types of structures, is considered for study. As system parameters are changed, new system
parameters are calculated on timely basis using system classification techniques. For these changed parameters,
controller gains and observer gains were calculated offline by solving the Riccatti equation iteratively by changing the



ARTICLE IN PRESS

0 0.5 1 1.5 2 2.5 3

-10

-5

0

5

10

y
1
, 
v
o

lt

0 1 2 3

-200

-100

0

100

200

u
2
, 
v
o

lt

0.5 1 1.5 2 2.5 3

-8
-6

-4
-2
0
2
4

6

0 1 2 3

-200

-100

0

100

200

u
2
, 
v
o

lt

Tip load  changes from 2g to 10g

0.5 1.5 2.5

Tip load  changes from 2g to 20 g

y
1
, 
v
o

lt

Time, Sec. Time, Sec.

0.5 1.5 2.5

Open loop response

Closed loop response

Open loop response

Closed loop response

Fig. 13. Performance of classical adaptive LQG control with different tip load changes.

Table 6

Table showing the effect of updating the controller parameters with fixing the output and control weighing matrices using Adaptive LQR

Tip load (g) Closed loop settling time (s) Closed loop modal amplitude (dB)

Sensor 1 Sensor 2

Mode 1 Mode 2 Mode 1 Mode 2

10 2.20 138 24 1050 0.0

20 3.50 140 6.0 793 6.0
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weight matrices. These system and controller parameters were saved and classified using learning vector quantization
(LVQ) neural networks. These parameters were available during real time control by simulating the LVQ neural
networks. The performance of the system improves drastically using re-identified system parameters and recalculated
control and observer gains. The effect of identification data length is studied and the results point out that this data
length should be judiciously chosen to have regular and accurate identification. When the results were compared with
classical adaptive linear quadratic Gaussian controller, it was observed that better transient performance could be
achieved by using system classification techniques. Also, these classical controllers are computation intensive and
require specialized hardware. However, proposed controller can be implemented on a normal P-4 processor.

Appendix

A.1. Transformation from state-space form to difference equation form

The state-coupling matrix A and the input-coupling matrix B are denoted by

A ¼

0 1 1 0

a21 a22 a23 a24

0 0 0 1

a41 a42 a43 a44

2
6664

3
7775 with a11 ¼ a13 ¼ a14 ¼ a31 ¼ a32 ¼ a33 ¼ 0 and a12 ¼ a34 ¼ 1, (A.1a)



ARTICLE IN PRESS
R. Kumar et al. / Journal of Sound and Vibration 307 (2007) 639–661 659
B ¼

b11 b12

b21 b22

b31 b32

b41 b42

2
6664

3
7775. (A.1b)

The difference equation auro-regressive coefficient matrices A0, A1 and A2 are obtained from state coupling
matrix A [26,27]:

P0 ¼
1 0

0 1

� �
; P1 ¼

�a33 �a34

�a43 �a44

" #
; P2 ¼

�a11 �a12

�a21 �a22

" #
. (A.2)

The difference equation moving average coefficient matrices Q1 andQ2 are obtained by transformation matrix
M is given by

M ¼

�a33 1 �a34 �a12

1 0 �a12 0

�a43 �a21 �a44 1

�a21 0 1 0

2
6664

3
7775. (A.3)

For obtaining Q1 and Q2 we have

Q0 ¼MQ, (A.4)

Q0 ¼

b011 b012

b021 b022

b031 b032

b041 b042

2
66664

3
77775 (A.5)

and the moving average coefficient matrices are given by

Q1 ¼
b021 b022

b041 b042

" #
; Q2 ¼

b011 b012

b031 b032

" #
. (A.6)
A.2. Transformation from difference equation form to state-space form

The ARMA difference equation forms can be converted to Canonical State-Space form, which are suitable
for control applications like Kalman Filter Design and Controller Design. Using certain transformation
[26,27], the system matrices A, B and C are easily calculated.

If P0, P1 and P2 are the auto-regressive coefficients and Q1 and Q2 are in moving average coefficients in
matrix form,

P0 ¼
1 0

0 1

� �
; P1 ¼

p1
11 p1

12

p1
21 p1

22

" #
; P2 ¼

p2
11 p2

12

p2
21 p2

22

" #
, (A.7a)

Q1 ¼
q1
11 q1

12

q1
21 q1

22

" #
; Q2 ¼

q2
11 q2

12

q2
21 q2

22

" #
(A.7b)
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the state-coupling matrix A is given by Guidorzi [26,27]

A ¼

0 1 0 0

�p211 �p111 �p212 �p112

0 0 0 1

�p221 �p121 �p222 �p122

2
66664

3
77775. (A.8)

The coefficients of the input coupling matrix can be defined from the elements of the moving average matrices.
The first transformation to the transformation matrix B0 is given as [26,27]

B0 ¼

b011 b012

b021 b022

b031 b032

b041 b042

2
66664

3
77775 ¼

Q2 1; 1ð Þ Q2 1; 2ð Þ

Q1 1; 1ð Þ Q1 1; 2ð Þ

Q2 2; 1ð Þ Q2 2; 2ð Þ

Q1 2; 1ð Þ Q1 2; 2ð Þ

2
66664

3
77775 ¼

q2
11 q2

12

q1
11 q1

12

q2
21 q2

22

q1
21 q1

22

2
66664

3
77775 (A.9)

where Q1 and Q2 are the moving average coefficients in matrix form. The other transformation matrix N is
created using

N ¼

p1
11 1 p1

12 p2
12

1 0 p2
12 0

p1
21 p2

21 p1
22 1

p2
21 0 1 0

2
66664

3
77775. (A.10)

The input coupling matrix B is obtained by the following relation:

B ¼ N�1B0 (A.11)

A.3. Transformation from difference equation form to matrix description form

If the difference equation coefficients (in matrix form) are given by

P0 ¼
1 0

0 1

� �
; P1 ¼

p111 p112

p121 p122

" #
; P2 ¼

p211 p212

p221 p222

" #
,

Q1 ¼
q111 q112

q121 q122

" #
; Q2 ¼

q211 q212

q221 q222

" #

the matrix description form (MFD) of the system can be written as

AyðtÞ ¼ BuðtÞ (A.12)

such that

1þ p111z�1 þ p211z�2 p112z�1 þ p212z�2

p121z�1 þ p221z�2 1þ p122z
�1 þ p222z

�2

" #
y1ðtÞ

y2ðtÞ

( )

¼
q111z�1 þ q211z�2 q112z�1 þ q212z�2

q121z�1 þ q221z�2 q122z�1 þ q222z�2

" #
u1ðtÞ

u2ðtÞ

( )
, ðA:13Þ

where z�1 is the delay operator. Similarly the MFD form can be transformed to difference equation form.
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